804 research outputs found

    Fuzzy coordinator in control problems

    Get PDF
    In this paper a hierarchical control structure using a fuzzy system for coordination of the control actions is studied. The architecture involves two levels of control: a coordination level and an execution level. Numerical experiments will be utilized to illustrate the behavior of the controller when it is applied to a nonlinear plant

    Multiple Relevant Feature Ensemble Selection Based on Multilayer Co-Evolutionary Consensus MapReduce

    Full text link
    IEEE Although feature selection for large data has been intensively investigated in data mining, machine learning, and pattern recognition, the challenges are not just to invent new algorithms to handle noisy and uncertain large data in applications, but rather to link the multiple relevant feature sources, structured, or unstructured, to develop an effective feature reduction method. In this paper, we propose a multiple relevant feature ensemble selection (MRFES) algorithm based on multilayer co-evolutionary consensus MapReduce (MCCM). We construct an effective MCCM model to handle feature ensemble selection of large-scale datasets with multiple relevant feature sources, and explore the unified consistency aggregation between the local solutions and global dominance solutions achieved by the co-evolutionary memeplexes, which participate in the cooperative feature ensemble selection process. This model attempts to reach a mutual decision agreement among co-evolutionary memeplexes, which calls for the need for mechanisms to detect some noncooperative co-evolutionary behaviors and achieve better Nash equilibrium resolutions. Extensive experimental comparative studies substantiate the effectiveness of MRFES to solve large-scale dataset problems with the complex noise and multiple relevant feature sources on some well-known benchmark datasets. The algorithm can greatly facilitate the selection of relevant feature subsets coming from the original feature space with better accuracy, efficiency, and interpretability. Moreover, we apply MRFES to human cerebral cortex-based classification prediction. Such successful applications are expected to significantly scale up classification prediction for large-scale and complex brain data in terms of efficiency and feasibility

    Fuzzy rule-based transfer learning for label space adaptation

    Full text link
    © 2017 IEEE. As the age of big data approaches, methods of massive scale data management are rapidly evolving. The traditional machine learning methods can no longer satisfy the exponential development of big data; there is a common assumption in these data-driving methods that the distribution of both the training data and testing data should be equivalent. A model built using today's data will not adequately address the classification tasks tomorrow if the distribution of the data item values has changed. Transfer learning is emerging as a solution to this issue, and many methods have been proposed. Few of the existing methods, however, explicitly indicate the solution to the case where the labels' distributions in two domains are different. This work proposes the fuzzy rule-based methods to deal with transfer learning problems where the discrepancy between the two domains shows in the label spaces. The presented methods are validated in both the synthetic and real-world datasets, and the experimental results verify the effectiveness of the introduced methods

    Multistep Fuzzy Bridged Refinement Domain Adaptation Algorithm and Its Application to Bank Failure Prediction

    Full text link
    © 2015 IEEE. Machine learning plays an important role in data classification and data-based prediction. In some real-world applications, however, the training data (coming from the source domain) and test data (from the target domain) come from different domains or time periods, and this may result in the different distributions of some features. Moreover, the values of the features and/or labels of the datasets might be nonnumeric and involve vague values. Traditional learning-based prediction and classification methods cannot handle these two issues. In this study, we propose a multistep fuzzy bridged refinement domain adaptation algorithm, which offers an effective way to deal with both issues. It utilizes a concept of similarity to modify the labels of the target instances that were initially predicted by a shift-unaware model. It then refines the labels using instances that are most similar to a given target instance. These instances are extracted from mixture domains composed of source and target domains. The proposed algorithm is built on a basis of some data and refines the labels, thus performing completely independently of the shift-unaware prediction model. The algorithm uses a fuzzy set-based approach to deal with the vague values of the features and labels. Four different datasets are used in the experiments to validate the proposed algorithm. The results, which are compared with those generated by the existing domain adaptation methods, demonstrate a significant improvement in prediction accuracy in both the above-mentioned datasets

    Fuzzy Rule-Based Domain Adaptation in Homogeneous and Heterogeneous Spaces

    Full text link
    © 2018 IEEE. Domain adaptation aims to leverage knowledge acquired from a related domain (called a source domain) to improve the efficiency of completing a prediction task (classification or regression) in the current domain (called the target domain), which has a different probability distribution from the source domain. Although domain adaptation has been widely studied, most existing research has focused on homogeneous domain adaptation, where both domains have identical feature spaces. Recently, a new challenge proposed in this area is heterogeneous domain adaptation where both the probability distributions and the feature spaces are different. Moreover, in both homogeneous and heterogeneous domain adaptation, the greatest efforts and major achievements have been made with classification tasks, while successful solutions for tackling regression problems are limited. This paper proposes two innovative fuzzy rule-based methods to deal with regression problems. The first method, called fuzzy homogeneous domain adaptation, handles homogeneous spaces while the second method, called fuzzy heterogeneous domain adaptation, handles heterogeneous spaces. Fuzzy rules are first generated from the source domain through a learning process; these rules, also known as knowledge, are then transferred to the target domain by establishing a latent feature space to minimize the gap between the feature spaces of the two domains. Through experiments on synthetic datasets, we demonstrate the effectiveness of both methods and discuss the impact of some of the significant parameters that affect performance. Experiments on real-world datasets also show that the proposed methods improve the performance of the target model over an existing source model or a model built using a small amount of target data

    Domain Selection of Transfer Learning in Fuzzy Prediction Models

    Full text link
    © 2019 IEEE. Transfer learning has emerged as a solution for the cases where little or no labeled data are available in the training process. It leverages the previously acquired knowledge (a source domain with a large amount of labeled data) to facilitate solving the current tasks (a target domain with little labeled data). Many transfer learning methods have been proposed, and especially fuzzy transfer learning method, which is based on fuzzy systems, has been developed because of its capability to deal with the uncertainty in transfer learning. However, there is one issue with fuzzy transfer learning that has not yet been resolved: the domain selection problem, which is heavily depended on the knowledge transfer method and the applied prediction model. In this work, we explore the domain selection problem in TakagiSugeno fuzzy model when multiple source domains are accessible, and define the similarity between the source and target domains to provide guidance for the domain selection. The experiments on synthetic datasets are designed to simulate the situations of multiple sources in transfer learning, and demonstrate the rationality of the proposed similarity in selecting the source domain for the target domain. Further, the real-world datasets are used to validate the proposed domain adaptation method, and verify its capability in solving practical situations

    Granular Fuzzy Regression Domain Adaptation in Takagi-Sugeno Fuzzy Models

    Full text link
    © 1993-2012 IEEE. In classical data-driven machine learning methods, massive amounts of labeled data are required to build a high-performance prediction model. However, the amount of labeled data in many real-world applications is insufficient, so establishing a prediction model is impossible. Transfer learning has recently emerged as a solution to this problem. It exploits the knowledge accumulated in auxiliary domains to help construct prediction models in a target domain with inadequate training data. Most existing transfer learning methods solve classification tasks; only a few are devoted to regression problems. In addition, the current methods ignore the inherent phenomenon of information granularity in transfer learning. In this study, granular computing techniques are applied to transfer learning. Three granular fuzzy regression domain adaptation methods to determine the estimated values for a regression target are proposed to address three challenging cases in domain adaptation. The proposed granular fuzzy regression domain adaptation methods change the input and/or output space of the source domain's model using space transformation, so that the fuzzy rules are more compatible with the target data. Experiments on synthetic and real-world datasets validate the effectiveness of the proposed methods

    How social interactions can affect Modern Code Review

    Get PDF
    Introduction: Modern Code Review (MCR) is a multistage process where developers evaluate source code written by others to enhance the software quality. Despite the numerous studies conducted on the effects of MCR on software quality, the non-technical issues in the MCR process have not been extensively studied. This study aims to investigate the social problems in the MCR process and to find possible ways to prevent them and improve the overall quality of the MCR process.Methodology: To achieve the research objectives, we applied the grounded theory research shaped by GQM approach to collect data on the attitudes of developers from different teams toward MCR. We conducted interviews with 25 software developers from 13 companies to obtain the information necessary to investigate how social interactions affect the code reviewing process.Results: Our findings show that interpersonal relationships within the team can have significant consequences on the MCR process. We also received a list of possible strategies to overcome these problems.Discussion: Our study provides a new perspective on the non-technical issues in the MCR process, which has not been extensively studied before. The findings of this study can help software development teams to address the social problems in the MCR process and improve the overall quality of their software products.Conclusion: This study provides valuable insights into the non-technical issues in the MCR process and the possible ways to prevent them. The findings of this study can help software development teams to improve the MCR process and the quality of their software products. Future research could explore the effectiveness of the identified strategies in addressing the social problems in the MCR process
    corecore